16-07-2014, 12:18 PM
Methane Hydrate
The world's largest natural gas resource is trapped beneath permafrost and ocean sediments
[TABLE="width: 780, align: center"]
[TR]
[TD="width: 380"]The Next Energy "Game Changer"?
As natural gas from shale becomes a global energy "game changer," oil and gas researchers are working to develop new technologies to produce natural gas from methane hydrate deposits. This research is important because methane hydrate deposits are believed to be a larger hydrocarbon resource than all of the world's oil, natural gas andcoal resources combined. [1] If these deposits can be efficiently and economically developed, methane hydrate could become an energy game changer.
Enormous amounts of methane hydrate have been found beneath Arctic permafrost, beneath Antarctic ice and in sedimentary deposits along continental margins worldwide. In some parts of the world they are much closer to high-population areas than any natural gas field.
What is Methane Hydrate?
Methane hydrate is a crystalline solid that consists of a methane molecule surrounded by a cage of interlocking water molecules (see image at top right). Methane hydrate is an "ice" that only occurs naturally in subsurface deposits where temperature and pressure conditions are favorable for its formation. These conditions are illustrated in the phase diagram in the right column of this page.
If the ice is removed from this temperature/pressure environment it becomes unstable. For this reason methane hydrate deposits are difficult to study. They can not be drilled and cored for study like other subsurface materials because as they are brought to the surface the pressure is reduced and the temperature rises. This causes the ice to melt and the methane to escape.
Several other names are commonly used for methane hydrate. These include: methane clathrate, hydromethane, methane ice, fire ice, natural gas hydrate, and gas hydrate. Most methane hydrate deposits also contain small amounts of other hydrocarbon hydrates. These include propane hydrate and ethane hydrate.
Where Are the Methane Hydrate Deposits?
Four Earth environments have the temperature and pressure conditions suitable for the formation and stability of methane hydrate. These are: 1) sediment and sedimentary rock units below Arctic permafrost; 2) sedimentary deposits along continental margins; 3) deep-water sediments of inland lakes and seas; and, 4) under Antarctic ice. [10]. With the exception of the Antarctic deposits, methane hydrate accumulations are not very deep below Earth's surface. In most situations the methane hydrate is within a few hundred meters of the sediment surface.
[TABLE="class: image380c, width: 380"]
[TR]
[TD]Deposit models for methane hydrate deposits at continental margins and under permafrost. [7][/TD]
[/TR]
[/TABLE]
In these environments methane hydrate occurs in the sediment as layers, nodules and intergranular cements. The deposits are often so dense and laterally persistent that they create an impermeable layer that traps natural gas moving upwards from below.
[TABLE="class: image380c, width: 380"]
[TR]
[TD]This map is a generalized version of locations in the USGS global inventory of natural gas hydrate occurrence database. [2][/TD]
[/TR]
[/TABLE]
[TABLE="class: image380c, width: 380"]
[TR]
[TD]One of the most extensively studied gas hydrate deposits is Blake Ridge, offshore North Carolina and South Carolina. Challenges of producing methane from this deposit are the high clay content and the low methane concentration. [3] This map is an example of the proximity of continental margin deposits to potential natural gas markets. Image by NOAA. [4][/TD]
[/TR]
[/TABLE]
In 2008, the United States Geological Survey estimated the total undiscovered gas hydrate resource for the Alaska North Slope area. They estimate that the total undiscovered natural gas resource in the form of gas hydrate ranges between 25.2 and 157.8 trillion cubic feet. Because very few wells have been drilled through the gas hydrate accumulations, the estimates have a very high level of uncertainty. [5]
Where is Methane Hydrate Produced Today?
To date there has been no large-scale commercial methane production from gas hydrate deposits. All of the production has either been small scale or experimental.
In early 2012, a joint project between the United States and Japan produced a steady flow of methane by injecting carbon dioxide into the methane hydrate accumulation. The carbon dioxide replaced the methane in the hydrate structure and liberated the methane to flow to the surface. This test was significant because it allowed the production of methane without the instabilities* associated with a melting gas hydrate. [6]
The most likely methane hydrate deposits to be selected for first development will have the following characteristics: 1) high concentrations of hydrate; 2) reservoir rocks with high permeability; and, 3) locations where there is an existing infrastructure. [7] Deposits meeting these characteristics will likely be located on the Alaska North Slope or in northern Russia.
Methane Hydrate Hazards
Methane hydrates are sensitive sediments. They can rapidly dissociate with an increase in temperature or a decrease in pressure. This dissociation produces free methane and water. The conversion of a solid sediment into liquids and gases will create a loss of support and shear strength. These can cause submarine slumping, landslides or subsidence that can damage production equipment and pipelines. [7]
*Sudden release of methane hydrates has been known to cause explosions of enourmous sizes. It is thought that some past global extinction events were caused by the release and/or explosion of large reserves of methane hydrate.
Methane is a powerful greenhouse gas. Warmer Arctic temperatures could result in gradual melting of gas hydrates below permafrost. Warming oceans could cause gradual melting of gas hydrates near the sediment-water interface.[/TD]
[/TR]
[/TABLE]
The world's largest natural gas resource is trapped beneath permafrost and ocean sediments
[TABLE="width: 780, align: center"]
[TR]
[TD="width: 380"]The Next Energy "Game Changer"?
As natural gas from shale becomes a global energy "game changer," oil and gas researchers are working to develop new technologies to produce natural gas from methane hydrate deposits. This research is important because methane hydrate deposits are believed to be a larger hydrocarbon resource than all of the world's oil, natural gas andcoal resources combined. [1] If these deposits can be efficiently and economically developed, methane hydrate could become an energy game changer.
Enormous amounts of methane hydrate have been found beneath Arctic permafrost, beneath Antarctic ice and in sedimentary deposits along continental margins worldwide. In some parts of the world they are much closer to high-population areas than any natural gas field.
What is Methane Hydrate?
Methane hydrate is a crystalline solid that consists of a methane molecule surrounded by a cage of interlocking water molecules (see image at top right). Methane hydrate is an "ice" that only occurs naturally in subsurface deposits where temperature and pressure conditions are favorable for its formation. These conditions are illustrated in the phase diagram in the right column of this page.
If the ice is removed from this temperature/pressure environment it becomes unstable. For this reason methane hydrate deposits are difficult to study. They can not be drilled and cored for study like other subsurface materials because as they are brought to the surface the pressure is reduced and the temperature rises. This causes the ice to melt and the methane to escape.
Several other names are commonly used for methane hydrate. These include: methane clathrate, hydromethane, methane ice, fire ice, natural gas hydrate, and gas hydrate. Most methane hydrate deposits also contain small amounts of other hydrocarbon hydrates. These include propane hydrate and ethane hydrate.
Where Are the Methane Hydrate Deposits?
Four Earth environments have the temperature and pressure conditions suitable for the formation and stability of methane hydrate. These are: 1) sediment and sedimentary rock units below Arctic permafrost; 2) sedimentary deposits along continental margins; 3) deep-water sediments of inland lakes and seas; and, 4) under Antarctic ice. [10]. With the exception of the Antarctic deposits, methane hydrate accumulations are not very deep below Earth's surface. In most situations the methane hydrate is within a few hundred meters of the sediment surface.
[TABLE="class: image380c, width: 380"]
[TR]
[TD]Deposit models for methane hydrate deposits at continental margins and under permafrost. [7][/TD]
[/TR]
[/TABLE]
In these environments methane hydrate occurs in the sediment as layers, nodules and intergranular cements. The deposits are often so dense and laterally persistent that they create an impermeable layer that traps natural gas moving upwards from below.
[TABLE="class: image380c, width: 380"]
[TR]
[TD]This map is a generalized version of locations in the USGS global inventory of natural gas hydrate occurrence database. [2][/TD]
[/TR]
[/TABLE]
[TABLE="class: image380c, width: 380"]
[TR]
[TD]One of the most extensively studied gas hydrate deposits is Blake Ridge, offshore North Carolina and South Carolina. Challenges of producing methane from this deposit are the high clay content and the low methane concentration. [3] This map is an example of the proximity of continental margin deposits to potential natural gas markets. Image by NOAA. [4][/TD]
[/TR]
[/TABLE]
In 2008, the United States Geological Survey estimated the total undiscovered gas hydrate resource for the Alaska North Slope area. They estimate that the total undiscovered natural gas resource in the form of gas hydrate ranges between 25.2 and 157.8 trillion cubic feet. Because very few wells have been drilled through the gas hydrate accumulations, the estimates have a very high level of uncertainty. [5]
Where is Methane Hydrate Produced Today?
To date there has been no large-scale commercial methane production from gas hydrate deposits. All of the production has either been small scale or experimental.
In early 2012, a joint project between the United States and Japan produced a steady flow of methane by injecting carbon dioxide into the methane hydrate accumulation. The carbon dioxide replaced the methane in the hydrate structure and liberated the methane to flow to the surface. This test was significant because it allowed the production of methane without the instabilities* associated with a melting gas hydrate. [6]
The most likely methane hydrate deposits to be selected for first development will have the following characteristics: 1) high concentrations of hydrate; 2) reservoir rocks with high permeability; and, 3) locations where there is an existing infrastructure. [7] Deposits meeting these characteristics will likely be located on the Alaska North Slope or in northern Russia.
Methane Hydrate Hazards
Methane hydrates are sensitive sediments. They can rapidly dissociate with an increase in temperature or a decrease in pressure. This dissociation produces free methane and water. The conversion of a solid sediment into liquids and gases will create a loss of support and shear strength. These can cause submarine slumping, landslides or subsidence that can damage production equipment and pipelines. [7]
*Sudden release of methane hydrates has been known to cause explosions of enourmous sizes. It is thought that some past global extinction events were caused by the release and/or explosion of large reserves of methane hydrate.
Methane is a powerful greenhouse gas. Warmer Arctic temperatures could result in gradual melting of gas hydrates below permafrost. Warming oceans could cause gradual melting of gas hydrates near the sediment-water interface.[/TD]
[/TR]
[/TABLE]
"Let me issue and control a nation's money and I care not who writes the laws. - Mayer Rothschild
"Civil disobedience is not our problem. Our problem is civil obedience! People are obedient in the face of poverty, starvation, stupidity, war, and cruelty. Our problem is that grand thieves are running the country. That's our problem!" - Howard Zinn
"If there is no struggle there is no progress. Power concedes nothing without a demand. It never did and never will" - Frederick Douglass
"Civil disobedience is not our problem. Our problem is civil obedience! People are obedient in the face of poverty, starvation, stupidity, war, and cruelty. Our problem is that grand thieves are running the country. That's our problem!" - Howard Zinn
"If there is no struggle there is no progress. Power concedes nothing without a demand. It never did and never will" - Frederick Douglass